

United Oilseeds and AHDB Joint Seminar

Welcome

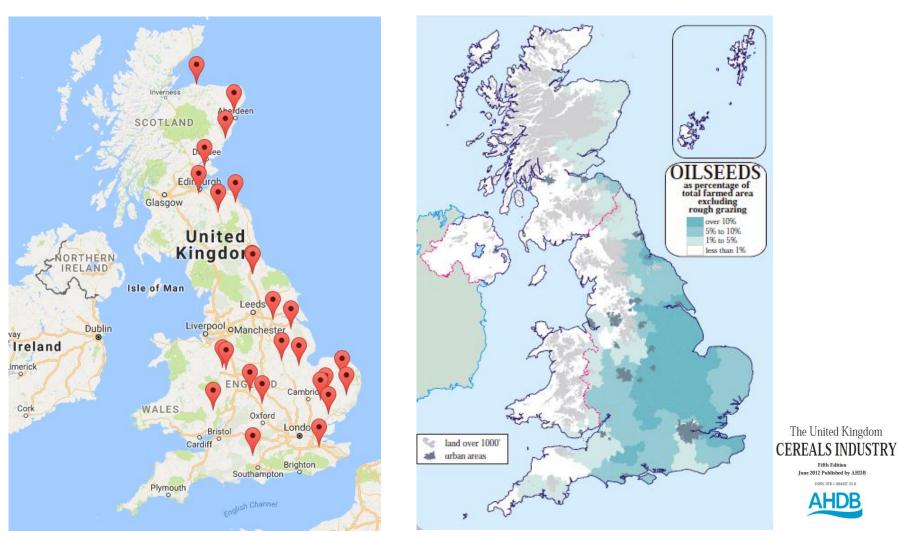
CEREALS & OILSEEDS

United Oilseeds and AHDB Joint Seminar

Making the most of the AHDB Recommended List for Oilseed Rape (OSR)

Jenna Watts, AHDB

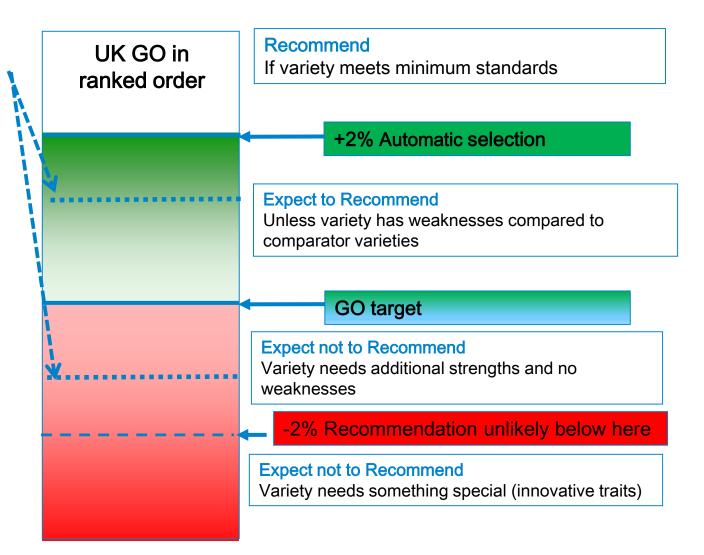
Outline


- How are varieties recommended?
- Recommended List for 2018/19
- Verticillium wilt
- RL have your say (discussion)

How are varieties recommended?

Trials

Winter OSR trial locations for harvest 2018


Criteria for selecting a new variety

		Minimum	NL 2 Candidate	Recommendation		
		standards	selection			
		All variety types	All variety types	All variety types		
UK	Treated gross output					
	Target		Mean GO of the	Mean GO of top		
	-		top three yielding	three yielding		
			varieties in RL	recommended		
			trials	varieties in RL trials		
			UK	UK		
East/West	Regional target		Mean GO of the	Mean GO of the top		
			top three yielding	three yielding		
			varieties in RL	recommended		
			trials	varieties in RL trials		
North	Regional target		East/West Region Mean GO of the	East/West Region Mean GO of the top		
North	Regional target		top three vielding	three vielding		
			varieties in RL	recommended		
			trials	varieties in RL trials		
			North Region	North Region		
	Automatic level ²		Target + 2	Target + 2		
	Minimum guideline		Target - 2	Target - 2		
	Agronomic merit					
	Target		Target #			
UK	Regional treated gross output		high	high		
UK	Resistance to lodging	6 (minimum)	&	high		
UK	Stem stiffness		&	med		
UK	Shortness of stem		high	high		
UK	Earliness of flowering		med	med		
East/West	Earliness of flowering		low	low		
North	Earliness of flowering		med	med		
UK	Earliness of maturity		high	high		
UK	Seed yield			low		
UK	Oil content			low		
UK	Glucosinolate content	18 (maximum)				
UK	Light leaf spot	6 ² (minimum)	&	v high		
East/West	Light leaf spot	3 ² (minimum)	&	v high		
North	Light leaf spot	6 (minimum)	&	v high		
UK	Stem canker	3 ² (minimum)	&	high		
East/West	Stem canker	3 ² (minimum)	&	high		
North	Stem canker	3 ² (minimum)	low	low		
UK	Tolerance to Imidazolinone (IMI) herbicides		low	Low		

Criteria for Recommendation

Comparator varieties

Does the variety have a balance of features that is sufficiently better than existing varieties and such that it could potentially provide a more economic return in the market?

OSR Recommended List 2018/19

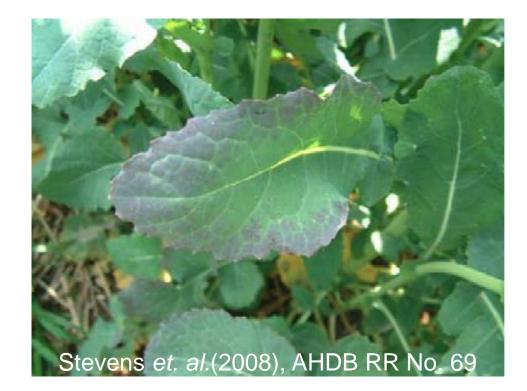
New single UK list for winter OSR

Winter oilseed rape 2018/19

- Yield, quality, agronomy and disease r	esistance																						
Recommended for the UK (both East/	Vest and N	orth regior	ns)					Recomm	ended for t	he East/W	est region	only	Recom	nended for	the North I	region only	1					Described v	
RECOMMENDED			ų		*		*								~			æ	ş	ų.	LSD (5%)		IS-CL &
	Alizze	Nikita	V 316 OL	Campus	Architect	Mentor \$	DK Sea	Windozz	Elgar	Flamingo	Wembley	Aquila	Elevation	Kielder	Broadwa	Butterfly	Barbados	Anastasi	SY Ham	V 324 OI	Average	Ergo †	DK Imag
Variety type	RH	Conv	RH	Conv	RH	RH	RH SD	RH	Conv	Conv	RH	RH	Conv	Conv	Conv	Conv	Conv	Conv	RH	RH		RH	RH
Scope of recommendation	UK	UK	UK	UK	Sp	Sp	UK	E/W	E/W	E/W	E/W	E/W	N	N	N	N	N	N	N	N		E/W	N
			С	С	NEW								NEW	NEW	NEW	NEW			*	*			
Gross output, yield adjusted for oil co	ntent (% co																						
United Kingdom (5.4 t/ha)	105	105	105	104	102	99	97	106	106	105	105	104	103	102	100	103	98	101	101	101	4.5	93	92
East/West region (5.4 t/ha)	105	105	105	104	102	99	98	107	107	105	105	105	102	101	99	102	97	[100]	100	101	4.8	94	[92]
North region (5.6 t/ha)	105	105	102	106	99	96	95	[102]	[100]	105	[102]	102	107	107	107	106	106	105	103	102	6.1	92	95
Seed yield (% control)																							
United Kingdom (5.0 t/ha)	105	104	105	104	103	98	99	107	106	104	105	104	103	101	100	103	99	102	102	101	4.2	94	93
East/West region (5.0 t/ha)	105	104	105	103	103	98	99	108	107	104	105	104	102	101	99	102	98	[102]	102	101	4.5	94	[92]
North region (5.2 t/ha)	104	104	102	105	100	95	97	[103]	[100]	104	[103]	103	107	105	106	106	106	106	105	101	5.8	92	96
Agronomic features																							
Resistance to lodging (1-9)	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	0.2	8	8
Stem stiffness (1-9)	8	8	8	8	8	9	9	8	8	8	8	8	8	9	8	8	8	8	7	8	0.4	8	8
Shortness of stem (1-9)	6	7	6	6	6	7	9	7	6	7	6	6	7	6	6	7	6	7	7	6	0.2	6	6
Earliness of flowering (1-9)	8	7	7	6	6	7	7	8	7	6	8	7	5	7	6	6	5	6	7	6	0.3	6	5
Earliness of maturity (1-9)	5	5	5	5	6	5	5	5	6	5	6	5	5	5	4	4	4	5	5	5	0.4	5	5
Seed quality (at 9% moisture)																							
Oil content, fungicide-treated (%)	46.0	46.2	45.7	45.7	45.1	46.2	44.5	44.8	45.4	46.2	45.2	45.6	45.8	46.3	45.7	45.7	45.2	44.8	44.4	46.2	0.2	45.4	45.3
Glucosinolate (µmoles/g of seed)	13.0	9.5	12.9	11.2	14.4	10.2	10.7	10.6	10.5	12.0	12.3	12.0	10.6	13.3	8.2	10.2	12.0	11.1	12.3	9.9	-	12.3	11.7
Disease resistance																							
Light leaf spot (1-9)	7	7	6	6	6	6	7	5	7	7	7	6	6	7	7	6	7	7	6	7	0.8	5	6
Stem canker (1-9)	5	4	5	6	5	3	8	5	6	4	5	8	4	3	4	7	7	6	4	4	0.9	4	5

Varieties no longer listed in the East/West region: Amalie, Angus, Arazzo, Fencer, Harper, Incentive, Picto, Popular, SY Harnas, Trinity and Troy.

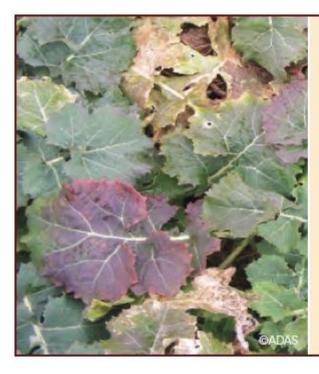
Varieties no longer listed in the North region: Amalie, DK Exentiel, DK Explicit, PT234 and Troy.


On the 1-9 scales, high figures indicate that a variety shows the character to a high degree (eg high resistance).

The target (spring) plant population is 40 plants/m² for RL trials. Maximum seed rate is 70 seeds/m² and may be lower if conditions permit.

Glucosinolate contents are taken from the National List trials data.

Winter oilseed rape: New TuYV resistant variety


	New
	Architect
	UK (TuYV)
UK gross output	102
E/W gross output	102
N gross output	99
Lodging	8
Stem stiffness	8
Shortness of stem	6
Earliness of maturity	6
Stem canker	5
Light leaf spot	6

Gross output controls: 5.4 t/ha (UK), 5.4 t/ha (E/W), 5.6 t/ha (N)

Turnip Yellows Virus (TuYV)

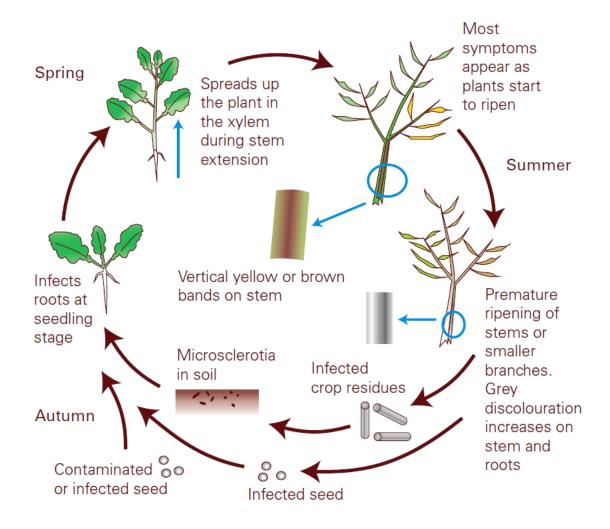
- The most important viral disease of oilseed rape in the UK
- Can decrease yields by up to 30%
- The virus is present throughout the UK but its prevalence is variable from year to year

Early symptoms of TuYV are intense purpling of leaves; later symptoms (interveinal yellowing and reddening of leaf margins) are not usually expressed before stem extension and can easily be confused with other stress symptoms and nutritional deficiencies.

Spring oilseed rape: new described varieties

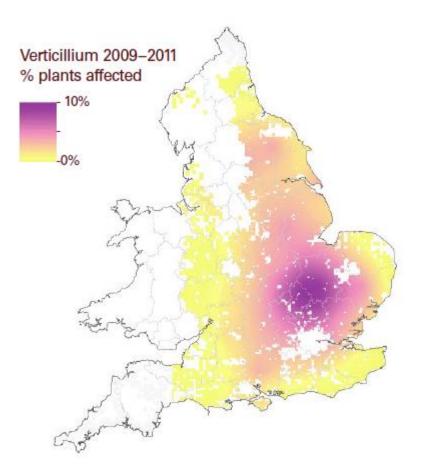
	Ne	ew		
	Lumen	Axana	Builder	Dodger
UK gross output	[105]	[98]	102	102
Shortness of stem	7	6	6	6
Earliness of maturity	7	5	5	5

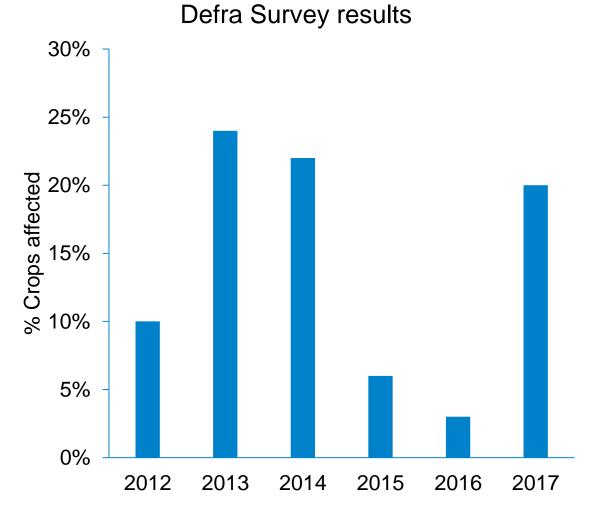
Gross output of controls: 3.2 t/ha


OSR Recommended List 2018/19 Summary

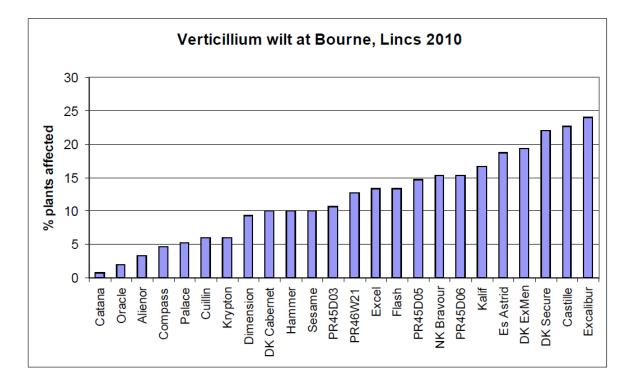
- New single UK list for winter OSR
- Architect marks a step forward for TuYV resistant varieties
- Two new spring OSR varieties on the described list

Verticillium wilt




Verticillium wilt

Verticillium incidence



Managing verticillium

- Monitor crops for disease pre-harvest
- If verticillium wilt is established:
 - Consider variety choice
 - Be prepared to extend rotations
- Do not use seed from crops with verticillium wilt

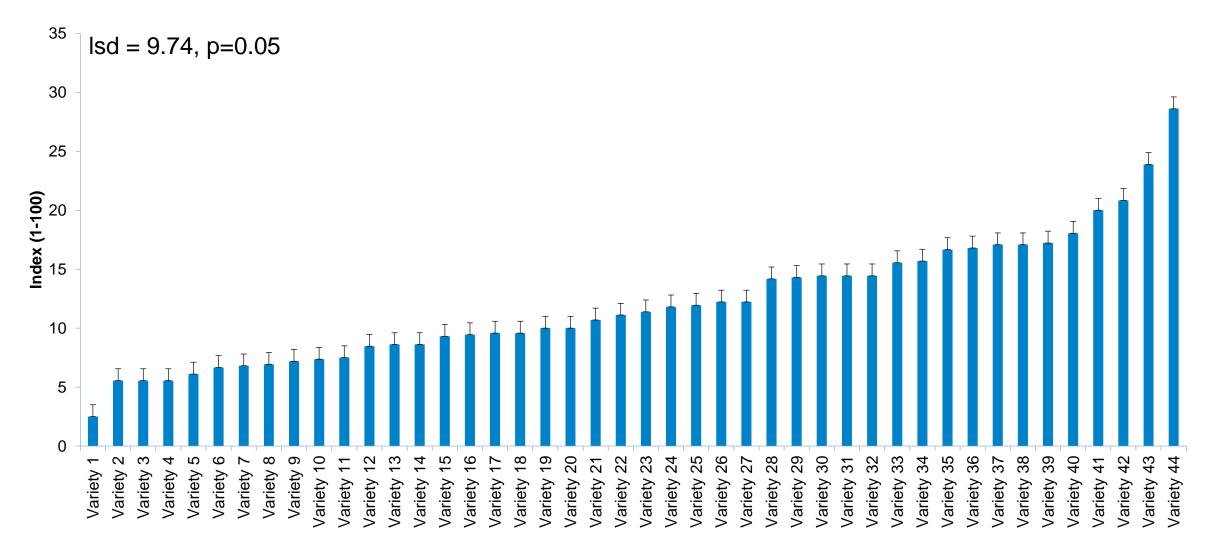
Importance wilt in oilsee	of verticilliu ed rape	m
Vertici Ilumwilt symptoms Aregenes protectibile, consider portical ac	Latest information - Verificition wit was found in an average of 16% of cope inhanest previent in eastern Bigland. - Botemal seed contamination on seed harvested from a heavily infected acp has been confirmed. - Late sowing does not allow the crop to escape infection, as verificitium can develop over a wide range of all temperatures. and temperatures.	Action - Monitor crops pre-harvest and determine levels of vericilium with. - Hiver tailium with is established, angider veriety choice and be prepared to extend rotations. - Do not use seed from crops with vericilium with.
Distribution In an HGCA-funded project (PFS12), the incidence of verifalium wilk was determined on 292 random/y selected crops of winter olseed raps intervest years 2008, 2010 and 2011. An average of 16 % of crops and 3.3 % of plants were affected. About 5% of crops hand quite high levels of vertifalium wilk, is over 20% of plants were affected. The affected crops were most prevalent in parts or eastern England, though some crops were affected as far north as Volgshire.	Severe verticilium with was contineed on various fams from countes which did nothave verticilium within the survey samples, including Kent and Herefordshire. Figure 1 should, therefore, be used as a guide to the refailty databution with sees shown as DW I having some infected grops.	Vertil Ban 2009-4011 Spinzerarfeled To To To To To To To To To To To To To
Yield loss Verticilium witt (Verdallium Sangisparum) was initially confirmed in England in 2007 and, since then, many more affected cops have been reported. In 2007 and, since then, reported. In 2007 and superside caused yield loss and, as a persistent soliborne disease, it threatens future oilseed rape production.	Pecent studies on single plants with different severities of verbillium with indicate that yield loss can occur when more than half the stem dramfreence is affected and plants are ripening prematurely.	Severely affects of plants showed decreases in thousand seed weight of between 12% and 24%. Larger yield losses can occur if the orop cancey solghoes and there is seed shedding. Yield impact is expected to very form year to year, depending or weather and orop factors.
Risk factors - Short rotations - Crops that are stressed or affected by other diseases - Poorly established crops - Seed from infected crops	Varietal resistance There have been few replicated writely trials for verifollium with the UK. An opperment in 200 identifed significant differences between write is in the course read severity of decase symptoms. In this experiment, varieties with low levels of decases included Catana	Compass and Quilin. Similar differences have been found in experiments supported by plant breeders. HGCA is working towards the development of a future verticilium vittresistance rating for the HGCA Recommended List.

Importance and management of verticillium wilt in winter oilseed rape (PR 512)

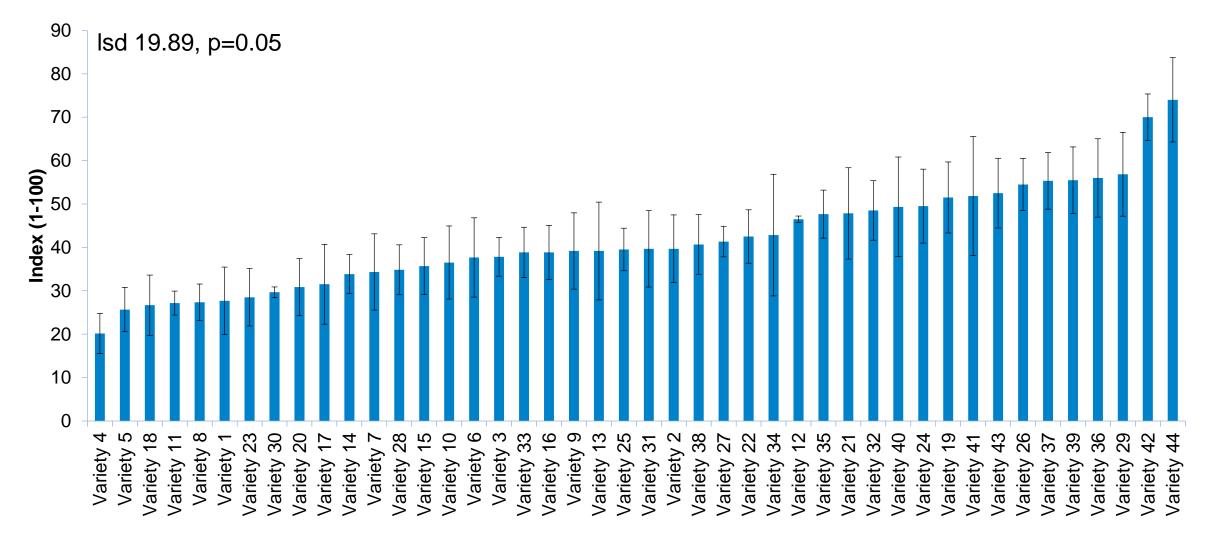
- Research project led by ADAS, Warwick Crop Centre and Fera
- Differences between varieties in tolerance to verticillium wilt identified
- Field results were from a single trial in a single year

A robust data set is required to calculate verticillium disease ratings

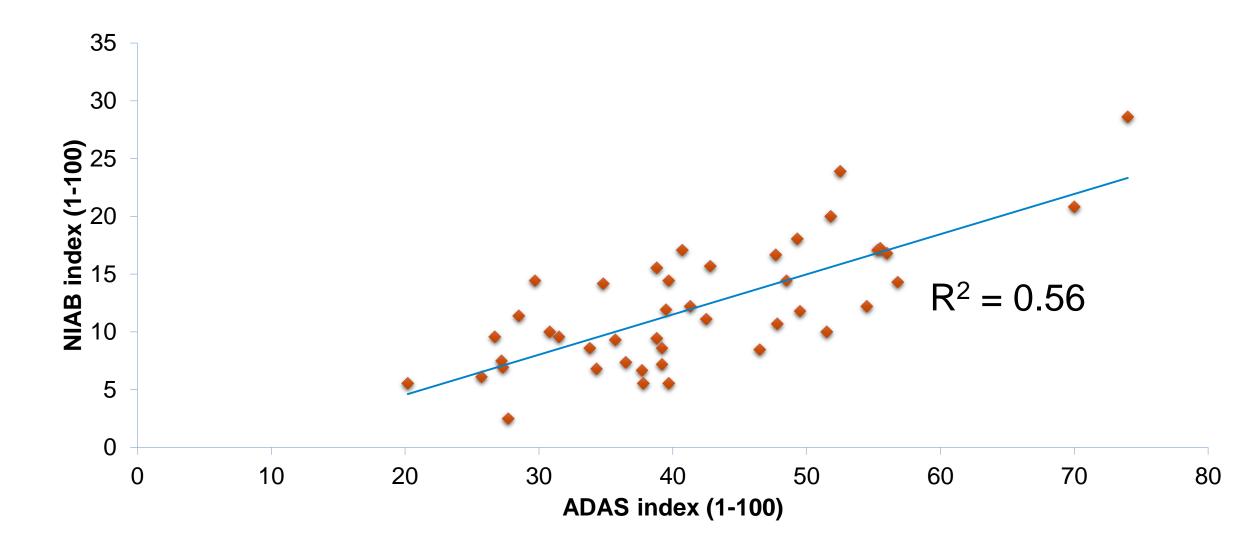
Research project funded by AHDB and Farmacy/Hutchinsons


Evaluation of resistance levels to verticillium wilt in UK oilseed rape varieties and relevance to productivity

- This project aims to evaluate resistance levels to verticillium wilt in UK oilseed rape varieties and provide a better understanding of its effects on productivity. The objectives are:
 - 1. To develop a verticillium wilt inoculated trial protocol
 - 2. To work with AHDB to produce a verticillium wilt disease rating
 - 3. To determine yield loss caused by verticillium wilt



Plus in kind support from plant breeders

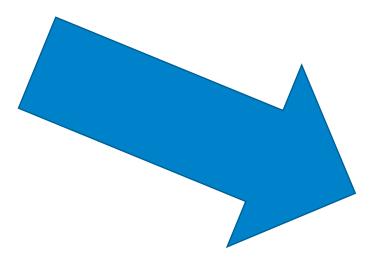

Varietal difference (inoculated site) NIAB results, 8 July

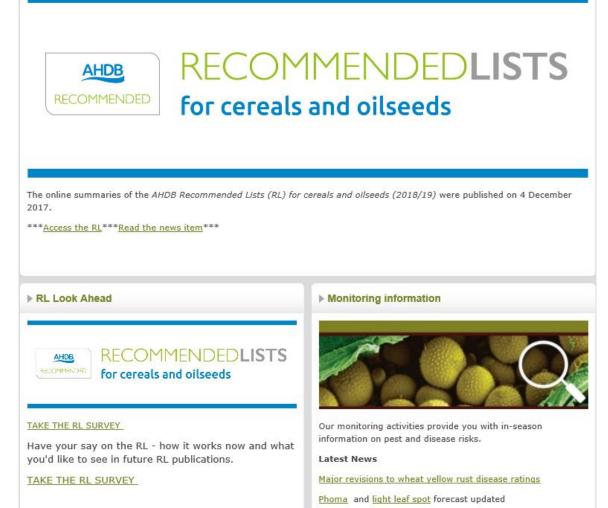
Varietal differences (naturally infected site) ADAS results, 12 July

Correlation between sites

Summary of results so far

- An inoculated test procedure has been developed which produced verticillium symptoms in a field trial.
- The inoculated test resulted in disease levels similar to those recorded in a naturally infected field test.
- A field scoring method was developed and used to assess varieties in each test.
- There was a significant correlation between disease scores from Recommended List varieties in the inoculated and naturally infected tests, indicating that reproducible differences between varieties exist.
- Results show that there is potential to calculate a verticillium disease rating.


RL have your say



RL survey

RL survey:

cereals.ahdb.org.uk/varieties

Discussion

RL have your say

Jenna.watts@ahdb.org.uk

United Oilseeds and AHDB Joint Seminar

Sustainable fungicide programmes for oilseed rape

Faye Ritchie, ADAS

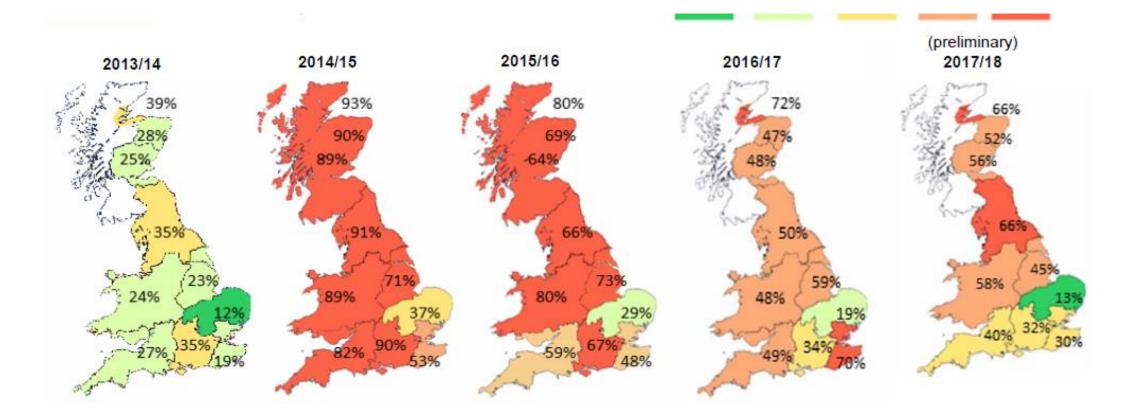
Sustainable fungicide programmes for winter oilseed rape

• Review of disease pressure this season

- Developments from the fungicide performance trials
- Sclerotinia infection risk tools

• Fungicide programmes: Managing disease, protecting efficacy

Review of disease pressure this season

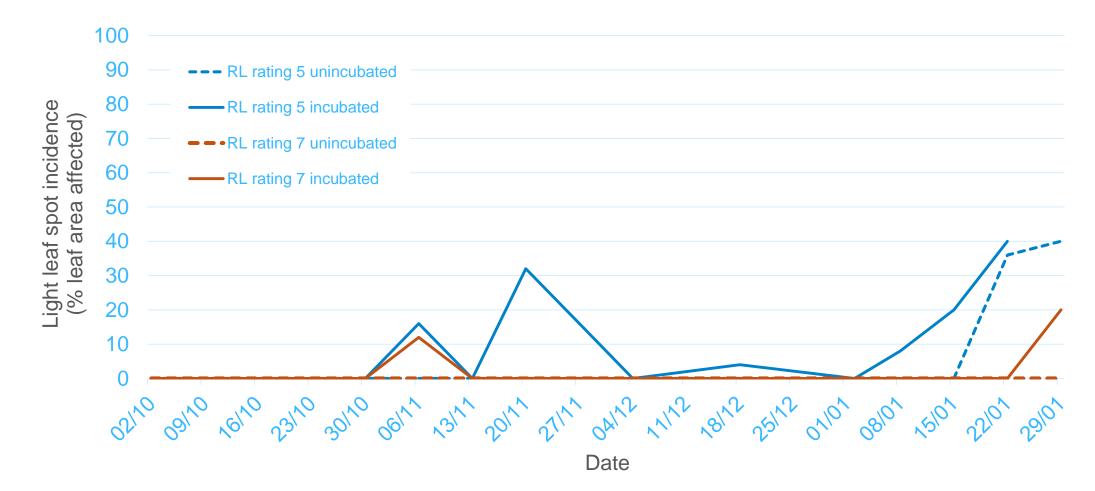

Phoma leaf spot epidemic: More severe this season

Arrow = date and percentage of plants in the OSR crop with phoma leaf spot

ADAS (Norfolk site) Source: DuPont, University of Hertfordshire, Hutchinsons

Light leaf spot forecast: Similar risk to last year

Source: Light leaf spot forecast cereals.ahdb.org.uk/leafspots (Rothamsted Research and Weather INnovations)


Light leaf spot: Disease pressure increasing – pressure slightly higher than same time last year (Yorkshire)

Date

Cumulative scores – completely untreated variety (RL rating 5). Source: ADAS

Light leaf spot: Disease pressure increasing, particularly on susceptible varieties (Herefordshire)

Actual scores – completely untreated varieties. Source: ADAS Developments from the OSR fungicide performance trials

Focus on the three major diseases: Phoma, light leaf spot and sclerotinia

Target Disease	Site (Variety)	Organisation
Phoma (Two-spray*)	Norfolk	ADAS
	Herefordshire	ADAS
Light Leaf Spot (Two-spray**)	North Yorkshire	ADAS
	Dorset	NIAB
	Midlothian	SRUC
Sclerotinia Stem Rot (single spray***)	Herefordshire	ADAS
	Ceredigion	ADAS

*10-20% plants affected, followed by 4-10 weeks (when re-infection evident).

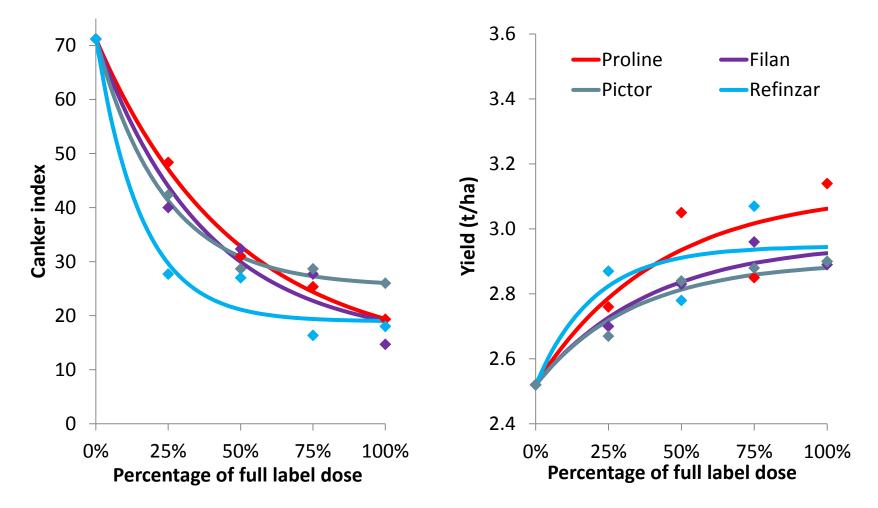
** Autumn (November/December) overspray, followed by pre/early stem extension application (February/March). ***early to mid-flowering application.

Products included in trials in 2017

Product	Active(s)	Full Dose (l/ha)	Phoma	Light Leaf Spot	Sclerotinia
Untreated	-	-	+	+	+
Proline 275	prothioconazole	0.63	+	+	+
Refinzara	penthiopyrad + picoxystrobin	1.0	+	+	-
Pictor ^a	dimoxystrobin + boscalid	0.5	+	+	-
Filan	boscalid	0.5 (kg/ha)	+	-	+
Amistar	azoxystrobin	1.0	-	-	+

+ = included in trials; - = not included in trials.

a = used as autumn or two-spray programme to fit experimental protocol (restrictions on label).


Products near to market are tested but data cannot be released until after registration.

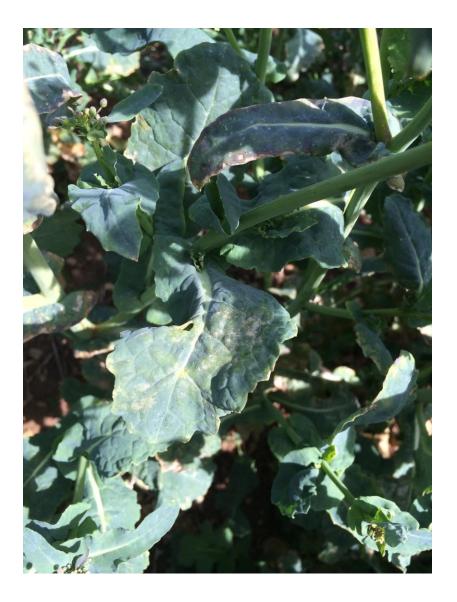
Phoma leaf spot/stem canker

Stem canker and yield (Norfolk) in 2016: Severe leaf spot pressure in the autumn but products performing well

Phoma leaf spot/stem canker: summary

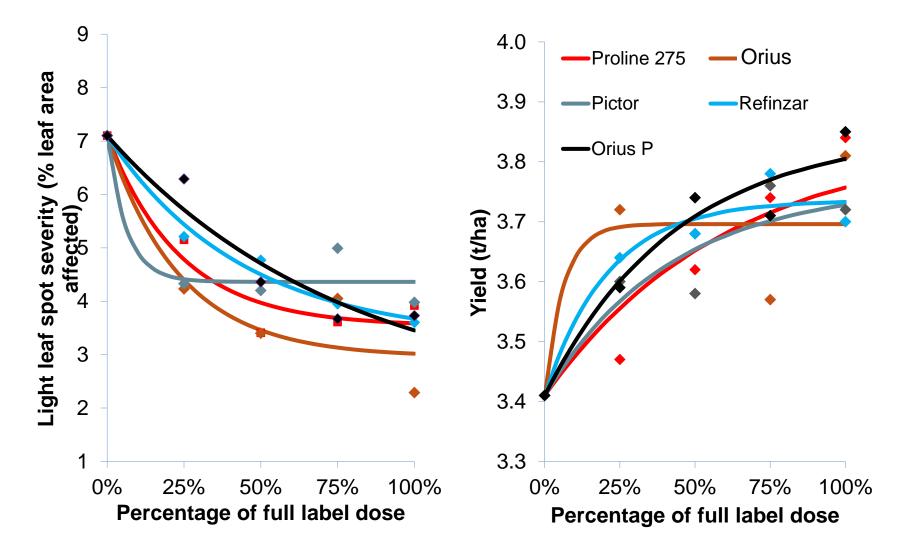
Season so far

- Early onset of the epidemic
- Thresholds met in late September/ early October, in some areas
- Re-infection occurred 4 to 6 weeks after first sprays

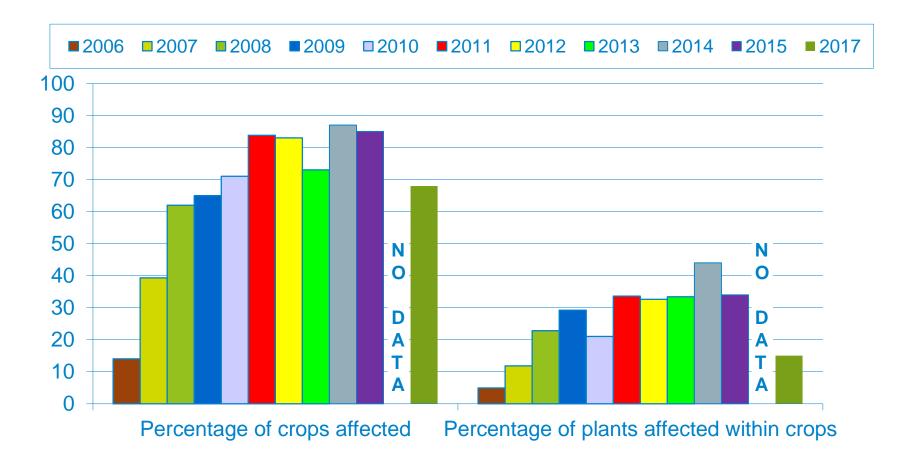

Fungicide efficacy

- Azole and nonazole products have activity
- Two applications in the autumn providing effective control
- No reports of resistance to fungicides

Outlook: 2017/2018

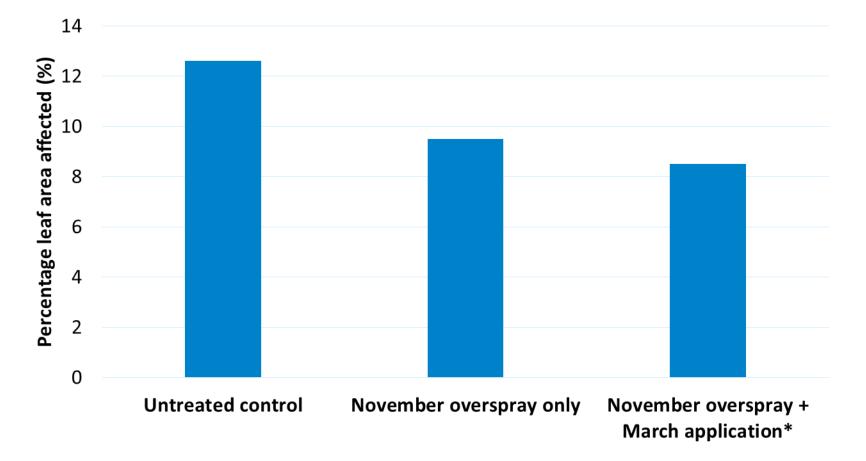

- Fungicide programmes up to date
- May see more stem canker pre-harvest in some crops

Light leaf spot

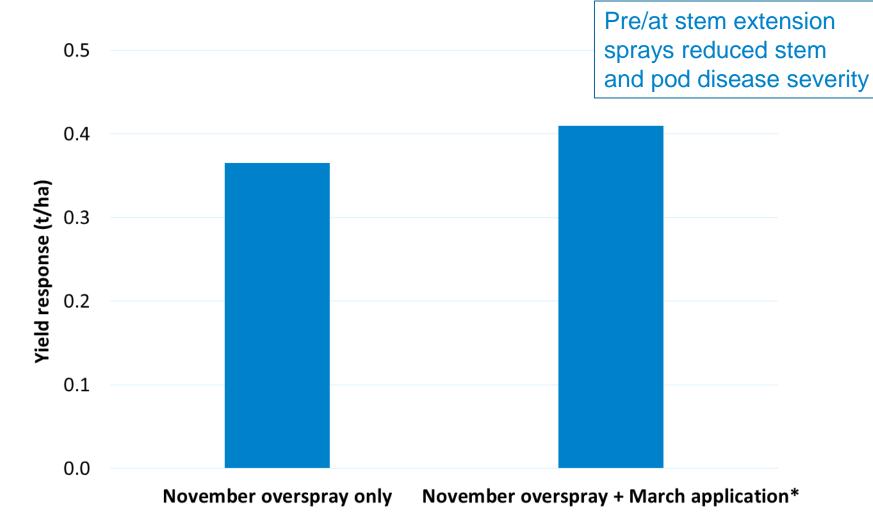


Light leaf spot control across years (5 trials in 2015 and 2016*)

*Orius P in harvest year 2015 only, all other products in both years


Light leaf spot: Lowest levels in the spring in England since 2008

www.cropmonitor.co.uk


Source: DEFRA winter oilseed rape disease surveys

Light leaf spot trials in 2017: Disease control and fungicide application timing (across 3 sites)*

*Overspray applied in November 2016 and stem extension treatments applied in early March 2017, typically at GS30 (rosette stage: beginning of stem extension) – variety RL disease ratings 5 and 6.

Significant yield increase from the November fungicide overspray (across 3 sites)

*Overspray applied in November 2016 and stem extension treatments applied in early March 2017, typically at GS30 (rosette stage: beginning of stem extension) – variety RL disease ratings 5 and 6

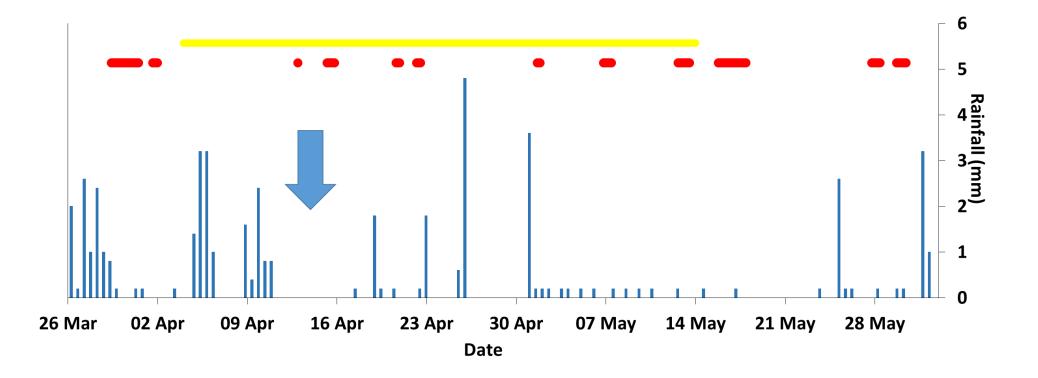
Light leaf spot: summary

Season so far

- Earlier-sown crops more at risk
- Lesions reported on incubated samples in November

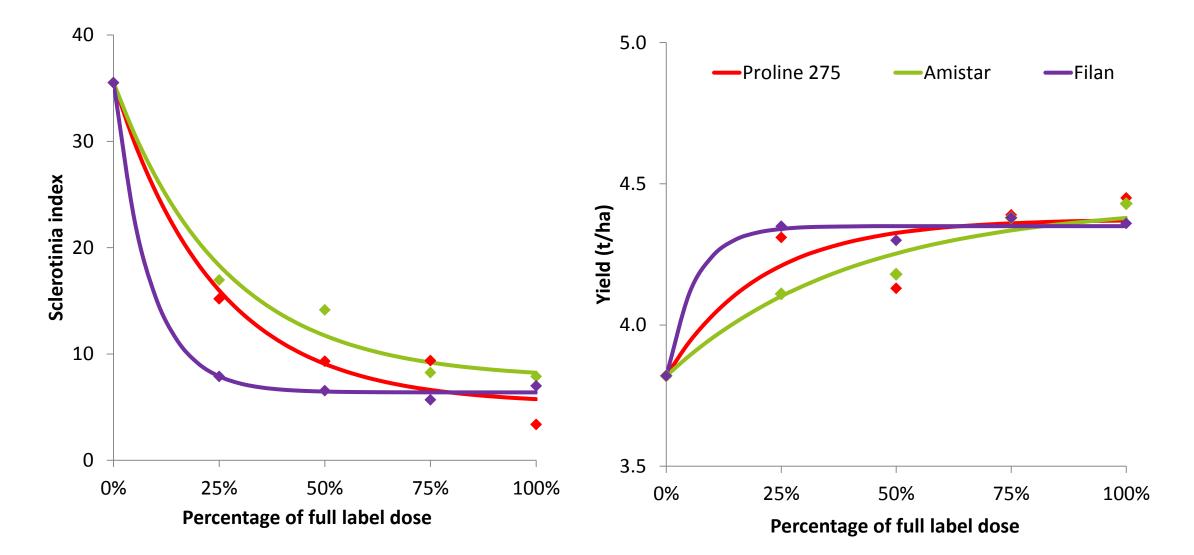
Fungicide efficacy

- Both azole and nonazole products provide control in the trials
- Anti-resistance management strategies important
- Use different modes of action, where possible

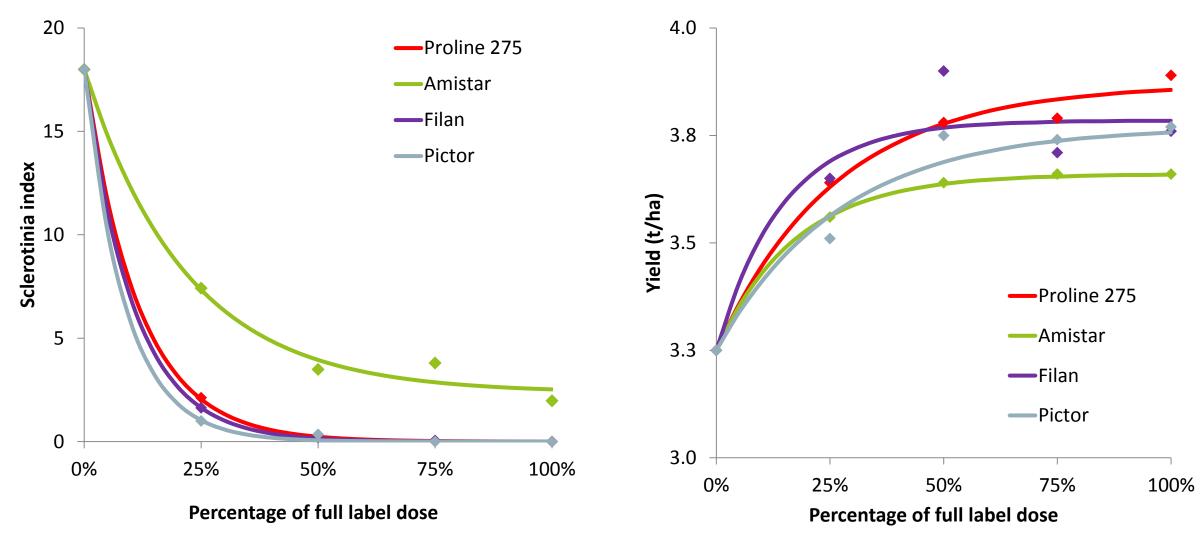

Outlook: 2017/2018

- Regional and local risk
- Monitor crops now and treat promptly, if seen
- Levels visible in the field increasing – particularly susceptible varieties

Sclerotinia stem rot

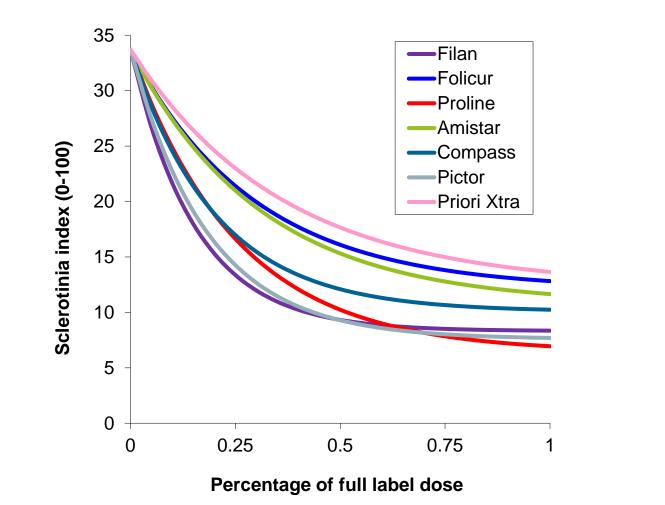


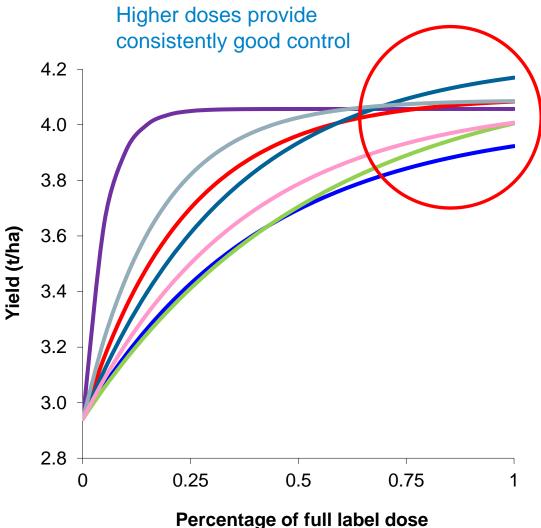
Sclerotinia risk: Herefordshire in 2017



Yellow line = duration of flowering Red points = Sklero Pro infection events Blue bars = rainfall (mm) Arrow = fungicide application date (14 April)

Sclerotinia: Disease and yield in Herefordshire in 2017




Performance of sclerotinia fungicides across 5 sites (2015 to 2017): moderate disease pressure

Cross-site analysis: 5 sites 2015 to 2017

No changes in the efficacy of sclerotinia fungicides for over 10 years: Data from 2006 to 2008 (high disease pressure: severe test of persistence)

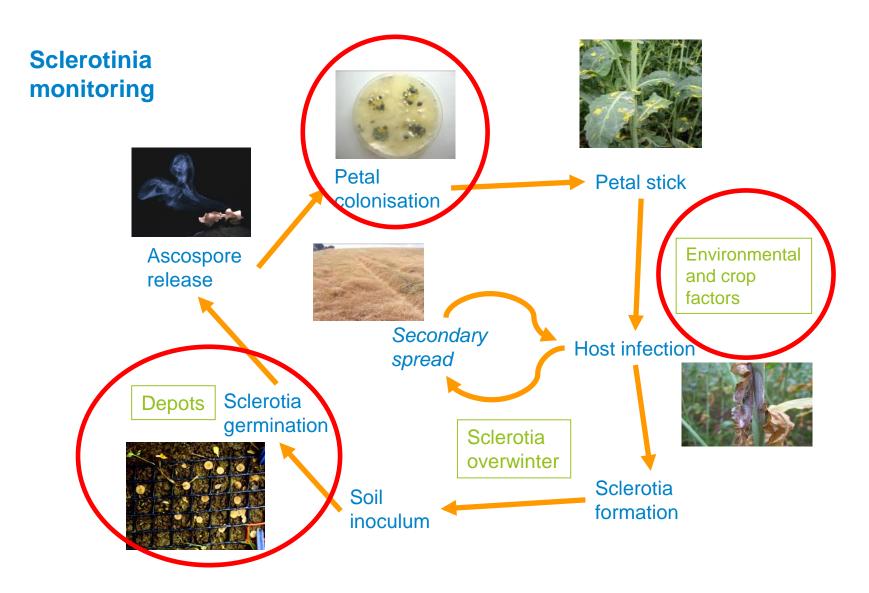
Cross-site analysis: 6 sites 2006 to 2008

Sclerotinia stem rot: summary

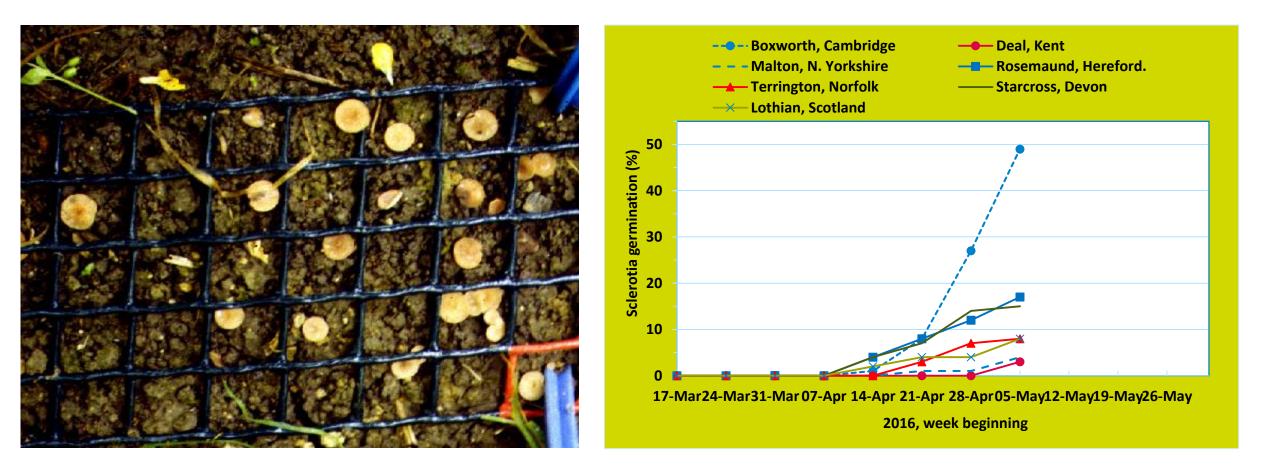
Season so far

- Infection risk dependent on weather during flowering
- Previous history on farm can increase risk

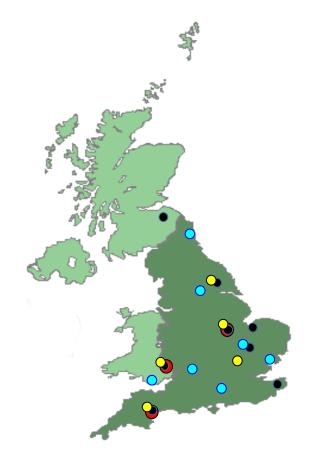
Fungicide efficacy


- Higher doses provide 3 weeks protection
- Range of active ingredients available
- No resistance to sclerotinia fungicides reported in UK

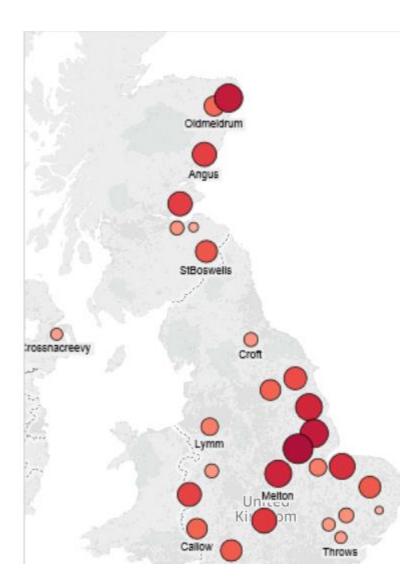
Outlook: 2017/2018


- Data available on efficacy of other products from previous projects
- Fungicides protectant activity only
- Application timing important for good control

Sclerotinia infection risk tools



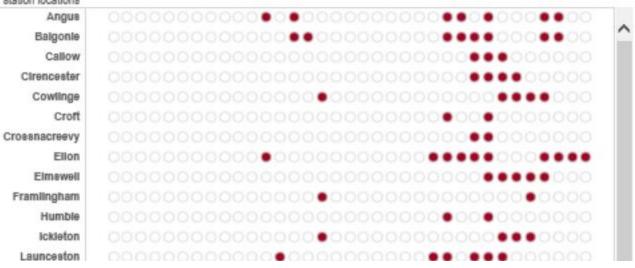
Sclerotinia germination and petal testing (March onwards)


Source: BASF and ADAS basfrealresults.co.uk/assessing-the-threat-of-sclerotinia-3/

AHDB Sclerotinia monitoring: Weather risk forecast reports

- Forecast weather reports at 15 sites during flowering on AHDB website
- Locations changed from last year
- SkleroPro infection event criteria local risk assessment (<u>>7</u>°C and 80% RH <u>></u>23 hours)

Sclerotinia weather-based risk report



Spring 2017 days with and without weather conducive to Sclerotinia infection

Click one or more locations on the map to populate the visualisation below. Use the date slider to obtain desired date range. A red filled circle indicates that a particular day comprised a 'high-risk infection event', i.e. an episode of at least 23 hrs. where Relative Humidity exceeded 80% and Temperature exceeded 7 °C.

Weather station locations

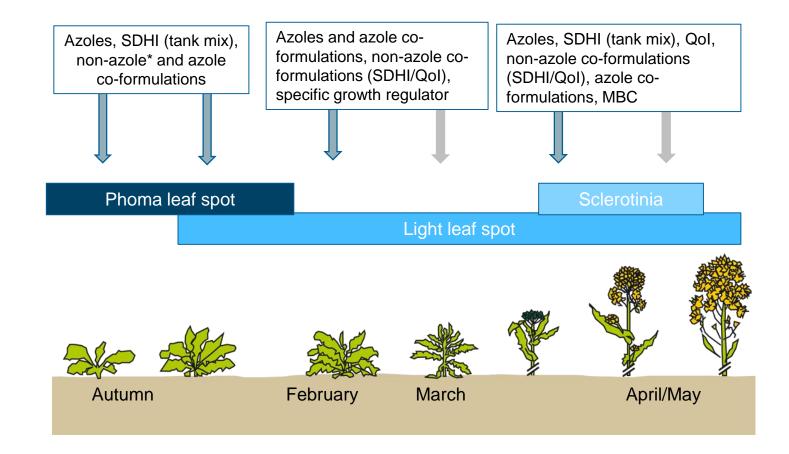
Fungicide programmes: Managing disease, protecting efficacy

Decreased sensitivity to azoles reported for *Pyrenopeziza brassicae*, which causes light leaf spot, in the UK

- Reports of reduced sensitivity to azoles in laboratory tests for light leaf spot in the UK
- Equivalent mutations to those conferring resistance to azoles in *Z. tritici* (+ novel mutations)
- Not seeing dramatic changes in efficacy of azoles in AHDB fungicide performance trials – still effective
- Determine distribution of such strains and how to manage resistance development

Carter et al., 2014 (Molecular Plant Pathology 15: 513-322)

Maximising the effective life of fungicides for the control of oilseed rape diseases through improved resistance management


- Determine the risk of fungicide resistance affecting fungicides used to control oilseed rape diseases (funded by AHDB)
- Test which resistance management strategies are most effective at slowing fungicide resistance selection in *P. brassicae* (funded by AHDB)
- Conduct an economic analysis of fungicide anti-resistance management strategies for the industry (funded through industry contributions)

AHDB Project. January 2017 – June 2021. Project partners: ADAS, AHDB, Rothamsted Research, Syngenta, BASF, Bayer CropScience, DuPont, ADAMA

FRAG guidelines: Fungicide resistance management strategies

- Bury crop residues
- Use disease resistant varieties
- Target fungicides timing and dose
- Avoid repeated use of same mode of action
- Light leaf spot: may be present but not the main target consider alternative modes of action

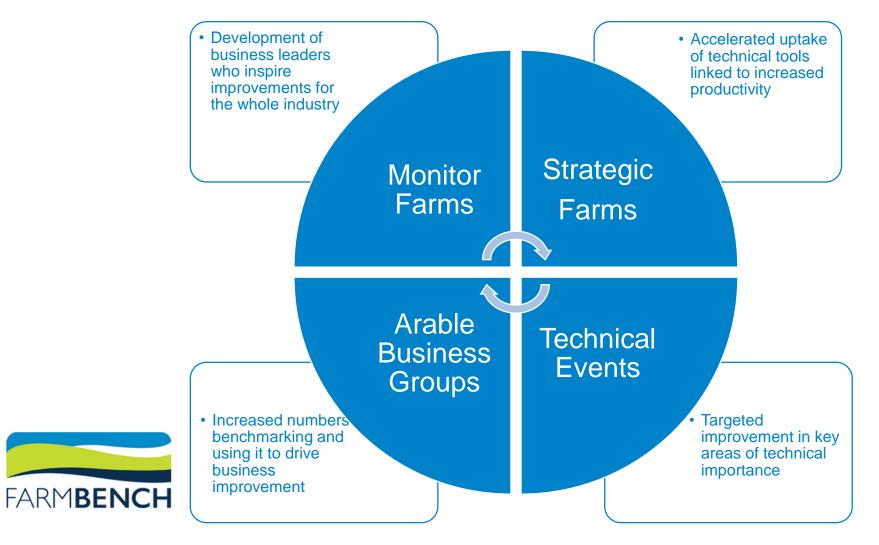
Resistance management strategies: Use different modes of action, tank mix, co-formulations – take a whole-programme approach

Sustainable fungicide programmes for oilseed rape: Summary

- Light leaf spot starting to increase monitoring crops and treating promptly important for good control
- Strains with decreased sensitivity to azoles (light leaf spot) have been found
- Weather-based risk reports will be available from AHDB to guide sclerotinia decisions
- No changes in the performance of fungicides against sclerotinia over 10 years
- Consider resistance management strategies across the entire fungicide programme

© Agriculture and Horticulture Development Board 2017 | All Rights Reserved

United Oilseeds and AHDB Joint Seminar


AHDB activity overview, including Monitor Farms and Strategic Farms

Emily Smith, AHDB

Farm Excellence Platform

Harnessing the proven benefits of "farmer to farmer" learning

Cereals & Oilseeds Knowledge Exchange

Tim Isaac Head of Knowledge Exchange

Emily Smith Knowledge Transfer Manager

Louise Petrakas Knowledge Exchange Coordinator

Fiona Geary Knowledge Transfer Officer

Richard Meredith Knowledge Exchange Manager – West and Wales

Philip Dolbear Knowledge Exchange Manager – South West

Judith Stafford Knowledge Exchange Manager – North and Northern Ireland

Harry Henderson Knowledge Exchange Manager – East Midlands

Teresa Meadows Knowledge Exchange Manager – East Anglia

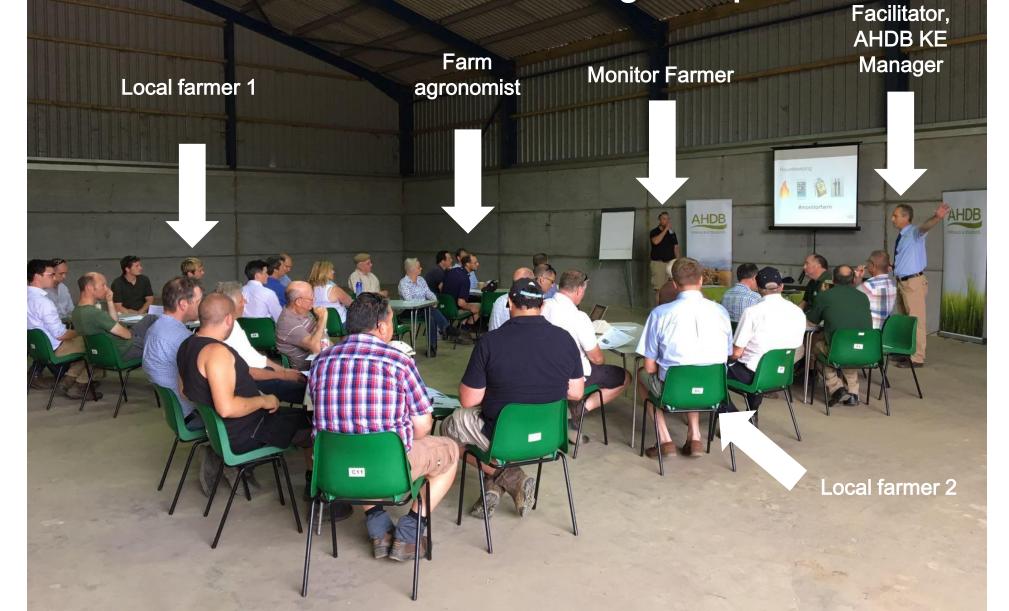
Paul Hill Knowledge Exchange Manager – South East

Cereals & Oilseeds Monitor Farms (2014 to 2018)

Phase 1: April 2014 – March 2017

Phase 2: Oct 2014 – Sep 2017

Phase 3: April 2015 – March 2018


Phase 4: April 2017 – March 2020

Scotland: 2016 – 2020

Phase 5: currently recruiting

Monitor Farm Steering Group

Arable Business Group

C11

Monitor Farmer

AHDB

Facilitator, AHDB KE Manager

Local farmer 1

Local farmer 2

Monitor Farm Group

"farmer led, farmer driven"

C11

Meeting topics

Expert

Experts

Monitor Farm try-outs

AHDB MONITOR FARMS

Sharing best practice from the Monitor Farm program

There are many different ways to increase soil

mere are many omerent ways to mcrease som health, including cover cropping but it has to be

Brian Barker, Stowmarket Monitor Farmer, has been ropriate to your farm situat

Brownie cover crops and ourying underpants in understand and improve the soils on his farm.

Brian Barker, Stowmarket Monitor Farmer, nas been Browing Cover crops and burying underpants in a bid to understand and immenue the ensist on his farm

Cover cropping for soil biology

cover crop mixes

Over winter stubble

Mix 1: Oil radish

Mix 2: Egyptian clover,

deeptill radish, field pea,

phacelia, niger, bristle oat,

Mix 3: Oat and mustard

considerations from trial

earlier the better earner une verrer • Be careful of residual

Establishment date: the

slugs, especially oil radish

• Bridge for weeds, diseases

Mixes preferred, 2+ • Use of frost kill potential

and pests

Mix 4: Vetch & rye

AHDB MONITOR FA

AHDB MONITOR FARMS

Measurable benefits of variable

rate (VR) include increased

yield, a more even crop and

increased margin

Maintenance dose of 100kg/ha

hriannenance uuse ur 100%/na 75p @ £345t (2011) = £345/ha

Learnington Monitor Farm =

£21.31/ha Nutrients more targeted, and

Etas 19 Saving parapolication

L13.13 saving her approximation Apply every other year giving

Potential Saving of £2300/year

2010 WW average increase in

Yeen vie vie er terver i starver 2011 WW average increase in visit of of of the starver is the starver

2011 WW average increase in Vield of 0.7 t/ha @ £150/t =

125 ha WW x £30 = £3750

2011 trial/ed variable rate seed

£105/ha

0.8t yield increase

CULU IV IV average Increase IN Vield 0.2 t/ha @ £150/t = £30/ha

Phopshat

Cereals 2017

The cost benefits of precision farming

Tractor and machine optimisation can form part Tractor and machine optimisation can norm part of a precision farming system combining targeted

Rob For, AHDB Cereals & Oilseeds monitor farmer

Air curtyations on 6/12/24m Farm-made chaser bin to keep trailers off fields

Learnington 3pay evaluated the benefits a tractor and machine control on his farm:

Farminiate chaser whi to teep interval Same tramlines every year, but not any it is important to interval in staff training

Same tramines every year, but not kin t is important to invest in staff training

Increased level of accuracy + High level efficiency of machinery, time and inputs - sees mainteens militariane make a day, as the arraying i

High level ethiciency of machinen; time and inputs
 After primary cultivations, only 38% of the ground is

Different systems not always

rigen capital vultary Fast-moving technology can become

Limitations of traffic may

High capital outlay

Addition

• Reduced operator fatigue

ncreased level of accuracy

· Fewer wheelings = less compaction

Ext

140

120

100

80

60

Rob Fox, AHDB Cereals & Oilseeds monitor farmer (Learnington Spa) evaluated the benefits and limitations of tractor and machine control on his farm.

Sharing best practice from the Monitor Farm programme

Cover cropping for healthy soils

What are the opportunities to improve soil organic matter and fertility using cover crops?

Howard Emmett farms near Truro in Cornwall on medium and heavy soils over shillet support. The rotation includes winter wheat, winter and spring barley and, more recent cauliflower. Benefits of traffic mana/

Cover crop mixes

Extractable soil nutrients from cov

- Mix 1: Egyptian clover, deeptill radish, field pea, phacelia, niger, bristle oat, common vetch
- Mix 2: Clover Mix 3: deeptill radish. bristle oat. sunflower, squarrose clover, serradella, phacelia, linseed,

buckwheat, false flax Potential advantages of cover

- crops¹ Increase availability of nutrients Mobilise, take up and mineralise
- nutrients
- Prevent leaching of nutrients
- Improve soil fertility
- Improve physical conditions and
- structure Increase organic matter
- Reduce soil erosion
- Protect water quality
- Improve crop rooting depth
- Increase yields

For more information visit cereals.ahdb.org.uk/monitorfarn

year Research Review No. 10 A review of the benefits, optimal crop management practices and knowledge gaps associated with different cover crop spec

Taking advantage of collective knowledge

DK Imperial Drilled 25 August 2016 Yield: 5t/ha 22nd overall in competition 38% of estimated crop potential

Scope to increase the amount of light and water captured

Cereals & Oilseeds Strategic Farm East

Strategic Farms are based on commercial farms to bridge the gap between research trials and practical application

- Six-year programme
- Farmer-to-farmer learning
- Accelerate the uptake of knowledge
- Explore best practice
- Economic analysis of each demonstration

Research projects to watch

Clubroot

- Clubroot resistant varieties need to be used strategically so resistant strains build up as slowly as possible in affected fields
- Developing targeted management methods for clubroot through pathotyping and field mapping to establish the impact and spread of the disease in oilseed rape

Rhizoctonia

- Initial results indicate genetic differences in resistance to *Rhizoctonia solani* in Brassica species
- Establishment loss can be recovered by an effective seed treatment
- Integrating control strategies against soil-borne Rhizoctonia solani in UK
 Oilseed rape (ICAROS)

Research projects to watch

Light leaf spot (LLS)

- Differences in LLS development on varieties across different locations and seasons, suggesting difference in fungal populations across UK
- Large populations of spores are produced from May onwards and continue throughout summer, which is earlier than previously reported
- Investigating components of oilseed rape light leaf spot epidemic
- Identifying resistance genes in commercial OSR cultivars and exploit those which exhibit good resistance to LLS
- Exploitation of resistance genes from oilseed rape for control of light leaf spot (PhD)

Research projects to watch

Forecasts

- Provision of oilseed rape decision support systems to the UK arable industry
- Forecasts produced each autumn for light leaf spot and phoma stem canker

Putting it into practice

- 1. Use an integrated approach
- 2. Increase awareness of soil health
- 3. Increase awareness of soil chemical properties
- 4. Increase awareness of field variations

Get involved

cereals.ahdb.org.uk/monitorfarms

cereals.ahdb.org.uk/strategic-farms

#monitorfarm

#strategicfarm

'Inspiring our farmers, growers and industry to succeed in a rapidly changing world'

United Oilseeds and AHDB Joint Seminar

Brexit & the Oilseeds sector

Amandeep Kaur Purewal

Senior Analyst, AHDB Market Intelligence

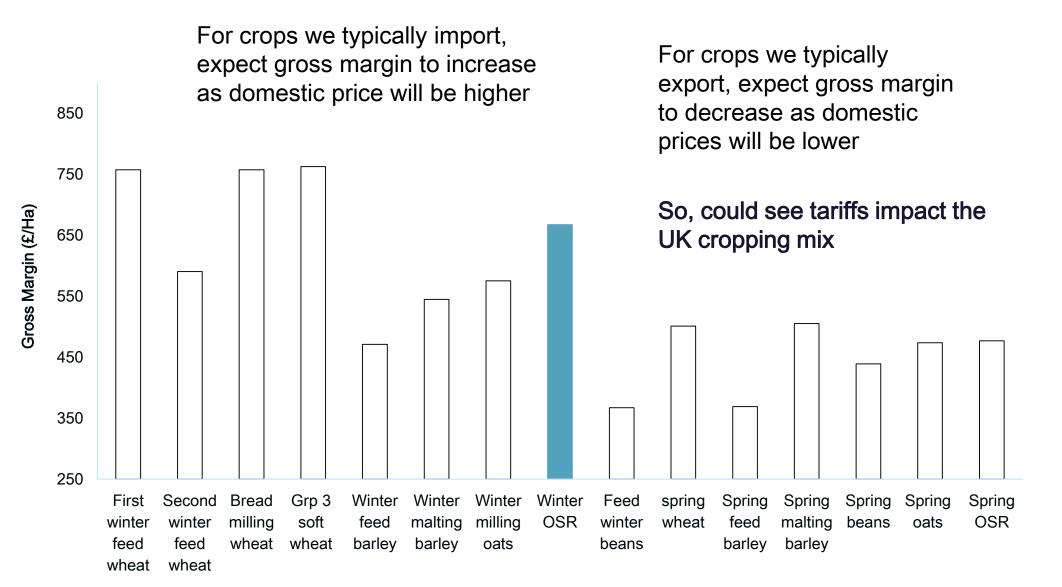
Outline

- Potential impact of Brexit on UK rapeseed
- Future direction of EU/UK biodiesel production & implications

Brexit effect

Opportunities & Challenges

Tariff scene setting

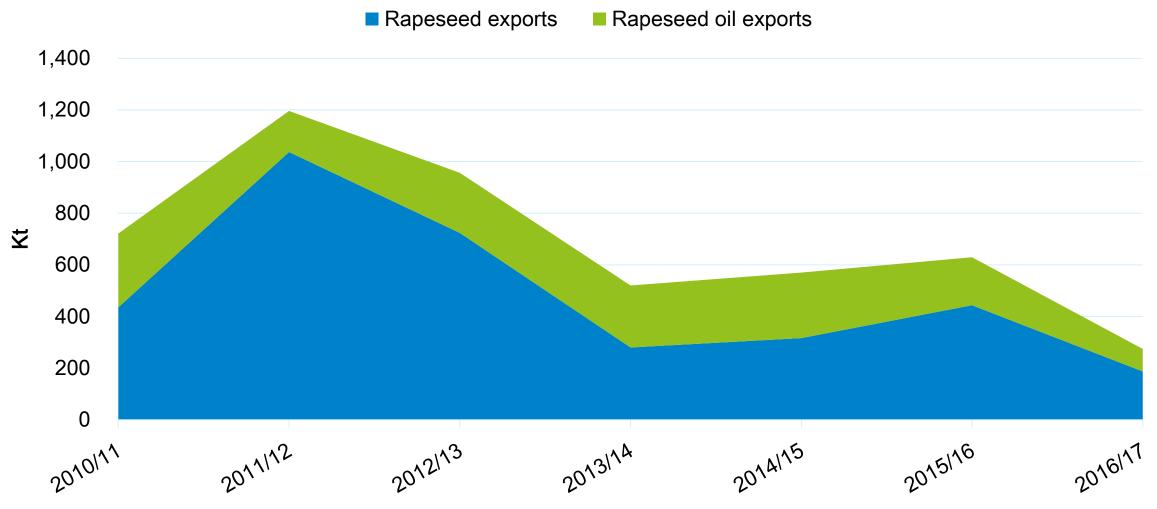

Tariff scene setting

Commodity	Tariff*, €/t
Soft wheat (low, medium quality)	95 (12 if in quota)
Barley	93 (8 - 16 if in quota)
Oats	89
Cilseed rape	0

*outside Tariff Rate Quota system or once quota limit is exhausted

Source: AHDB Horizon: What might Brexit mean for UK trade in Cereals and Oilseeds

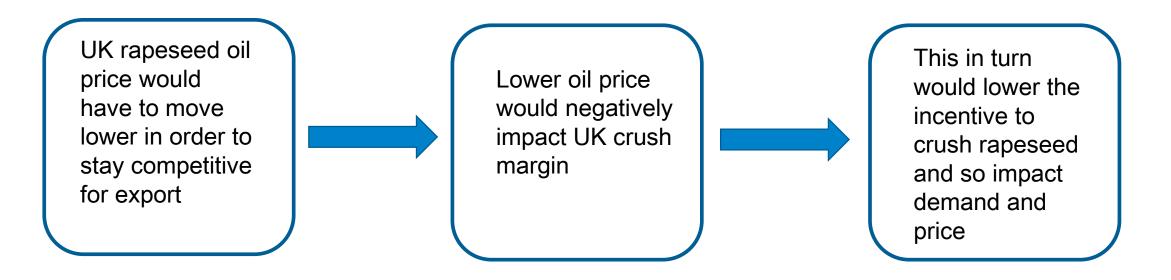
If tariffs are in place...


Source: AHDB

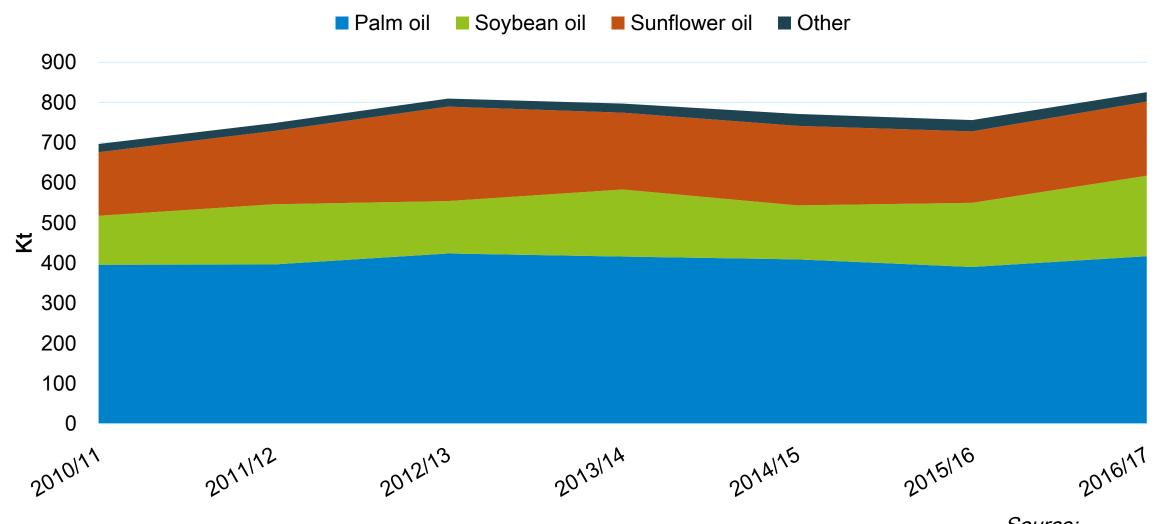
Vegetable oils have tarrifs...

Commodity	Tariff
Rapeseed, low erucic acid (excluding seed for sowing)	None
Rapeseed, high erucic acid	None
Soyabeans (excluding seed for sowing)	None
Crude rapeseed oil (excluding for technical/industrial uses)	6.4%
Rapeseed oil, low erucic acid (excluding crude or for technical/industrial uses)	9.6%
Soyabean oil (excluding crude or for technical/industrial uses)	9.6%
Crude palm oil (excluding for technical/industrial uses)	3.8%
Sunflowerseed oil (excluding crude or for technical/industrial uses)	9.6%

Source: Eurostat TARIC database


UK rapeseed oil exports compared with rapeseed exports

Source: HMRC

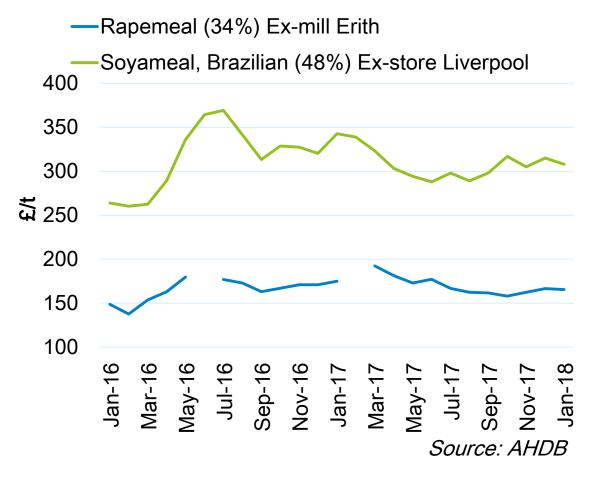

Possible implications of tariffs on UK rapeseed oil

- UK is net exporter of rapeseed oil
- If a tariff was placed on exports:

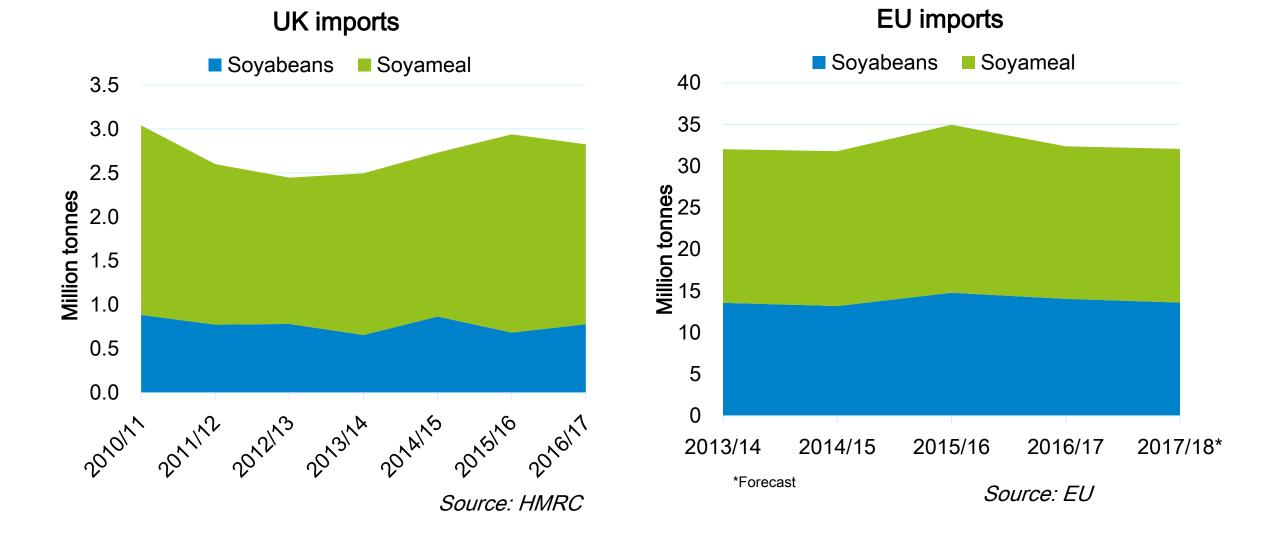
However, tariffs could also be placed on vegetable oil imports...

UK veg oil imports – substitutability?

Source:


Potential tariffs on soyameal imports suggest the UK needs to improve its self-sufficiency in protein feed

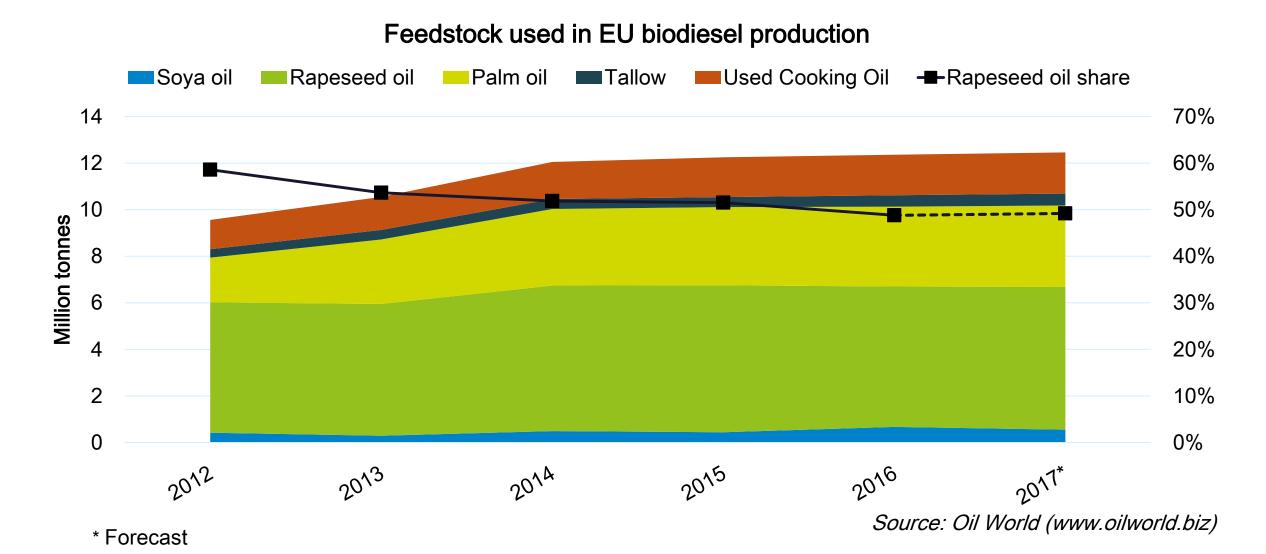
- UK is net importer of rapemeal
- No tariff on rapemeal
- Tariff on soyameal: 4.5%
- GB animal feed demand (5-year average):


Rapeseed meal and cake – 688Kt Soyabean meal and cake –

- 1,104Kt
- Incentive to reduce reliance on soyameal imports

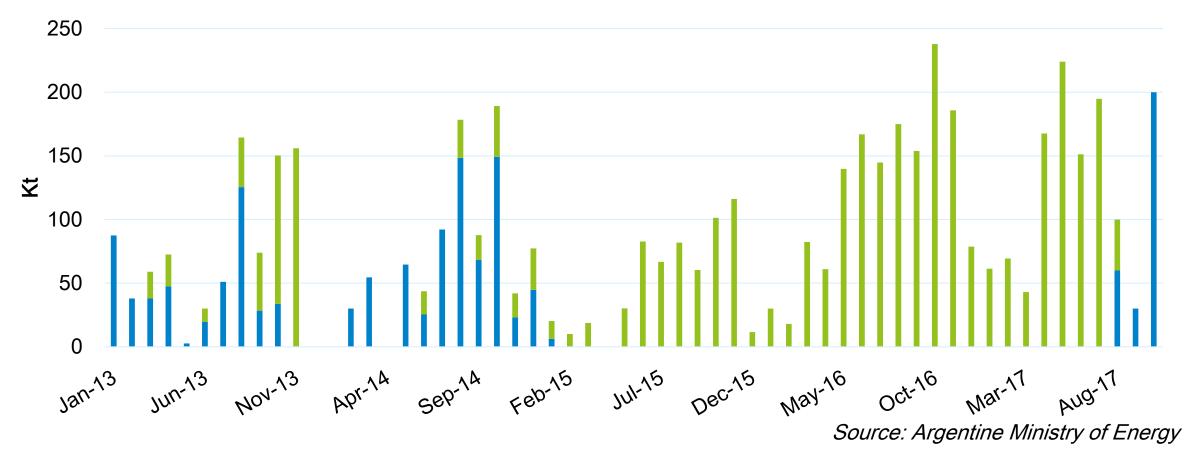
UK oilmeal prices

UK and EU soyabean/soyameal imports



Biofuels

Implications for rapeseed oil demand


Over 60% of EU rapeseed oil demand is for biodiesel production

Threat to EU rapeseed oil demand as anti-dumping duties on Argentine biodiesel imports reduced

Argentine biodiesel exports to the EU and USA

EU USA

Journey through EU biofuel policy...

2009 – First RED 10% of energy used in transport to come from renewable sources by 2020

2015 – Amendment Proportion of foodbased biofuels that can contribute to 10% target capped at 7%

2016 – Clean Energy Package

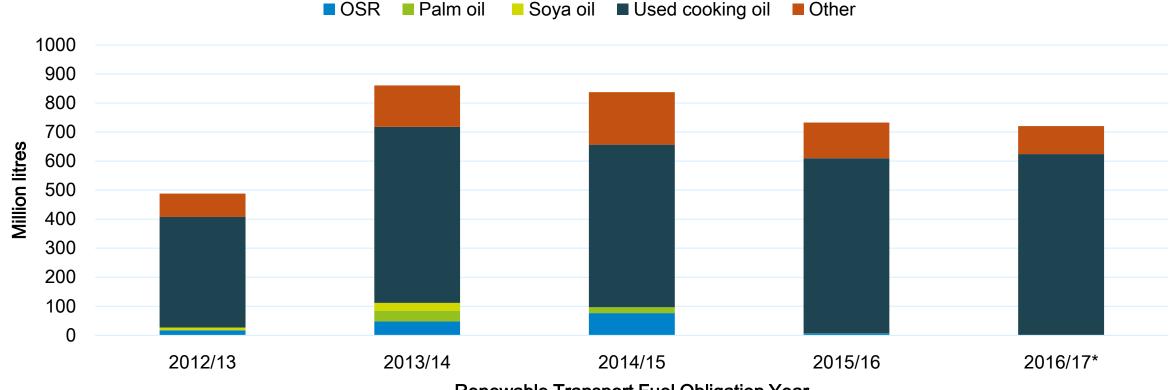
- No overall renewable energy target in transport proposed.
- Proposal for reducing cap on food-based biofuels from 7% to 3.8% by 2030

Jan 2018 – RED II (European Parliament)

- 12% of energy used in transport to come from renewable sources by 2030.
- Cap for food based biofuels to remain at 7%. Member state shares must not exceed 2017 levels.
- Ban palm oil in biofuels from 2021

Dec 2017 – RED II (Member state level)

- 14% of energy used in transport to come from renewable sources by 2030.
- Cap for food based biofuels to remain at 7%*.


* If a member state's share of foodbased biofuels is less than 7%, it qualifies for a lower overall target

UK biofuels policy

- Increase the Renewable Transport Fuel Obligation target to 9.75% in 2020
- Target from 2020 2032 to gradually increase from 9.75% to 12.4%
- Development fuels sub-target to gradually increase from 0.15% in 2020 to 2.8% in 2032
- Cap on crop based biofuels to steadily decline from 4% in 2020 to 2% in 2032

Used Cooking Oil is main raw material for UK biodiesel production

Consumption of biodiesel in UK road transport fuel*

Renewable Transport Fuel Obligation Year

*Includes imported biodiesel RTFO reporting year runs from April – April

Source : Department for Transport

Key Points

- If a tariff system for trade is in place after Brexit, rapeseed will not be affected directly as there is no tariff on oilseeds
- However, there could be indirect consequences
- The need to reduce soyameal imports is already on the radar, but could be accelerated by Brexit
- EU biofuel policy could arguably have a larger effect on UK rapeseed than Brexit

amandeep.kaur.purewal@ahdb.org.uk 024 7647 8954

United Oilseeds and AHDB Joint Seminar

Meeting close

CEREALS & OILSEEDS